今天想和大家分享一下如何利用 Python 拟合具有非平稳特征的神经网络,从而对股票进行预测。
中国建筑 - 601668.SH 中国交建 - 601800.SH 中国中铁 - 601390.SH 中国铁建 - 601186.SH 中国中冶 - 601618.SH 中国电建 - 601669.SH
import math
import numpy as np
import pandas as pd
import seaborn as sns
sns.set_style('whitegrid')
import sklearn.neural_network
from datetime import datetime
import matplotlib.pyplot as plt
from sklearn import preprocessing
from pandas import Series,DataFrame
from statsmodels.tsa.stattools import adfuller
from scipy.stats import norm, t, skew, kurtosis, kurtosistest, beta
对中国电建 - 601669.SH 进行预测
# 前复权数据
data = pd.read_csv('建筑.csv',index_col=0)
data.head(3).append(data.tail(3))
China_DJ = data['601669']
new_index = pd.to_datetime(China_DJ.index)
Y= Series(China_DJ.values,new_index)
Y.head(6)
#收益率
Y_pct = Y.pct_change()
Y_pct= Y_pct[1:].copy()
Y_pct.head()
#转换到 0 、 1
f = lambda x: 1 if x > 0 else -1
Y_pct = Y_pct.apply(f)
Y_pct.head()
Y_pct = Y_pct.shift(-1,freq='1d')
Y_pct.head()
#用 X 表示每日价格,来预测未来 601669 的收益
new_index1 = pd.to_datetime(data.index)
X = DataFrame(data.values,new_index1)
X.tail()
X = X[:-2]
X.index
Y.index
NN = sklearn.neural_network.MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(10, 5))
NN = NN.fit(X, Y)
NN
MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(10, 5), learning_rate='constant', learning_rate_init=0.001, max_iter=200, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False)
NN.predict(X)
array([ 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1], dtype=int64)
def check_accuracy(predictions, Y):
correct = len(Y4[predictions == Y])
return correct / float(len(Y))
predictions = NN.predict(X)
check_accuracy(predictions, Y)
0.61
imputer = preprocessing.Imputer()
scaler = preprocessing.MinMaxScaler()
X = imputer.fit_transform(X)
X = scaler.fit_transform(X)
NN = NN.fit(X, Y)
NN
MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(10, 5), learning_rate='constant', learning_rate_init=0.001, max_iter=200, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False)
NN.predict(X)
array([-1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1], dtype=int64)
predictions = NN.predict(X)
check_accuracy(predictions, Y4)
0.71
可以预测第二天的方向超过 71%的时间
# 前复权数据
OOS_pricing_data = pd.read_csv('建筑 2.csv',index_col=0)
OOS_pricing_data.head(3).append(OOS_pricing_data.tail(3))
Y1 = OOS_pricing_data['601669']
new_index = pd.to_datetime(Y1.index)
Y5 = Series(Y1.values,new_index)
Y5 = Y5.pct_change()
Y5 = Y5[1:]
Y5.head()
#转换到 0 、 1
f = lambda x: 1 if x > 0 else -1
Y5 = Y5.apply(f)
Y5.head()
Y5 = Y5.shift(-1,freq='1d')
Y5.head()
new_index2 = pd.to_datetime(OOS_pricing_data.index)
X11 = DataFrame(OOS_pricing_data.values,new_index2)
X11.head()
X11 = X11[:-1]
X11.index
Y5.index
X11 = imputer.fit_transform(X11)
X11 = scaler.fit_transform(X11)
OOS_predictions = NN.predict(X11)
check_accuracy(OOS_predictions, OOS_Y)
result: 0.5034013605442177
50%
只有 50%的准确率
可能是在不同时期之间的不稳定造成的,这导致学习神经网络,很适合现在的条件训练数据,但不适合在不同条件下测试数据。也有可能是神经网络是适合噪声而没有体现出真正的信号,很难讲。
new_index3 = pd.to_datetime(data.index)
Y6 = pd.DataFrame(data.values,new_index3)
Y6.columns = ['601668','601800','601390','601186','601618','601669']
Y6.head()
corr_df = pd.rolling_corr(Y6 , window=30)
corr_df
看看平稳性
fig = plt.figure(figsize=(16,8.5))
plt.plot(corr_df[:,'601668','601669'])
plt.plot(corr_df[:,'601800','601669'])
plt.plot(corr_df[:,'601390','601669'])
plt.plot(corr_df[:,'601186','601669'])
plt.plot(corr_df[:,'601618','601669'])
ts = corr_df[:, '601618','601669']
plt.hlines(ts.mean(), ts.index[30-1], ts.index[-1], linestyles='dashed')
plt.ylabel('Pearson Correlation Coefficient')
plt.legend(['601668 x 601669', '601800 x 601669', '601390 x 601669', '601186 x 601669', '601618 x 601669','601618 x 601669 AVG'])
adfuller(data['601668'])
adfuller(data['601800'])
adfuller(data['601390'])
adfuller(data['601186'])
adfuller(data['601618'])
adfuller(data['601669'])
源地址: https://uqer.io/community/share/587db6aa23a7d6004da3665b
1
lbp0200 2017-01-19 17:50:53 +08:00 via Android
收藏先
|
2
menc 2017-01-19 19:01:17 +08:00 1
笑尿。
“只有 50%的准确率” 这意味着这个神经网络和抛硬币没有太大的区别 |
3
txlty 2017-01-19 19:15:18 +08:00
A 股受政策影响很大,要么千股齐涨,要么千股起跌。所以这个场景,人工智能并不适合预测。更多人选择做美股的量化交易。
不过,我觉得机器学习在 A 股自有 A 股的利用方法。等我做完了发现无效的话,再把代码发出来。 |
4
txlty 2017-01-19 19:55:44 +08:00
我见过最奇葩的言论是这个 http://tieba.baidu.com/p/3859044063
不知这哥们成功没。非要说学习“新闻联播”,不是不可以(语义分析?),但政策出台的具体时间根本无法预测。而政策的出现,已经等价于一个结果,而不是预测因素。 |
5
txlty 2017-01-19 19:59:58 +08:00
|
6
server 2017-01-19 20:05:12 +08:00
这兄弟 又来安利了
|
7
sshpandas 2017-01-19 20:18:48 +08:00
人工神经网络不是万金油。
|
8
01186 2017-01-20 18:14:16 +08:00
学习新闻联播...笑了...
|